4.7 Review

Paradigm and Framework of WUS-CLV Feedback Loop in Stem Cell Niche for SAM Maintenance and Cell Identity Transition

期刊

AGRONOMY-BASEL
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy12123132

关键词

evolution; shoot apical meristem (SAM); development; regulation; transition

资金

  1. NIPGR core research grant

向作者/读者索取更多资源

Shoot apical meristem plays an important role in the differential architectural development in plants. The WUS-CLV feedback loop regulates stem cell proliferation and differentiation, and interacts with other signaling networks and pathways.
Shoot apical meristem (SAM) consists of stem cells that act as a reservoir for the aerial growth. It plays an important role in the differential architectural development in plants. SAM actively performs parallel functions by maintaining the pluripotent of stem cells and continuous organogenesis throughout the plant's life cycle. Molecular mechanisms regulating the signaling networks of this dual function of the SAM have been progressively understood. In the SAM, the feedback loop of WUSCHEL (WUS)-CLAVATA (CLV) has been found to be the key regulator in stabilizing stem cell proliferation and differentiation. In general, WUS migrates into central zone (CZ) from organizing center (OC) and activates the expression of CLV3 by binding to the promoter elements. CLV3 acts as a ligand to interact with the CLV1, leucine rich repeats (LRR) receptor-like kinase (RLK) and LRR receptor-like protein CLV2, and protein kinase coryne (CRN) (CLV2/CRN) to restrict WUS transcription to the OC. Evolution of CLV3 is one of the main factors contributing to the transformation of two-dimensional (2D) to 3D plants. WUS-CLV loop is involved in several pathways and networks that integrate on meristem maintenance and cell identity transition. WUS-CLV maintains stem cells with simultaneous differentiation signals by the spatial-temporal signaling of the phytohormones. WUS-CLV loop has an interaction with reactive oxygen species (ROS), an important signaling molecules regulating cell proliferation and developmental transition. WUS also forms feedback loop with AGAMOUS (AG) for differentiation, proliferation, and termination of floral meristem. These loops might also involve in interaction with vernalization and its regulatory factors that oversees the precise timing of flowering after exposure to cold temperatures. In this review, we highlight the evolutionary and developmental importance of the WUS-CLV feedback loop on SAM maintenance and cell identity transition for inflorescence and floral meristem development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据