4.6 Article

Numerical Robustness Evaluation of Floating-Point Closed-Loop Control Based on Interval Analysis

期刊

ELECTRONICS
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/electronics12020390

关键词

digital control; floating-point arithmetic; interval arithmetic

向作者/读者索取更多资源

This paper proposes a method to assess the numerical stability of control algorithms using interval analysis, with a case study on electric drive systems. The results show that resonant control is more robust in terms of numerical stability compared to vector space decomposition, making it the preferred choice for mission-critical electric drive control.
Power-electronics-based systems have penetrated into several critical sectors, such as the industry, power generation, energy transmission and distribution, and transportation. In this context, the system's control, often implemented in real-time processing units, has to meet stringent requirements in terms of safety and repeatability. Given the growing complexity of the implemented algorithms, floating-point arithmetic is being increasingly adopted for high-performance systems. This paper proposes to assess the numerical stability of the control algorithms by means of an interval analysis. The case study of an electric drive is considered, given the wide adoption of such systems and the importance they hold for the safety of the applications. In particular, two different control strategies-the resonant control and the vector space decomposition-are examined, and a sensitivity analysis based on the proposed technique highlights the different characteristics of the two with respect to numerical stability. The proposed method shows how the resonant control is more robust to variations of the controller gain coefficients with respect to the numerical stability, which could make it the preferred choice for mission-critical electric drive control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据