4.6 Article

Quantitative Characterization of Shallow Marine Sediments in Tight Gas Fields of Middle Indus Basin: A Rational Approach of Multiple Rock Physics Diagnostic Models

期刊

PROCESSES
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/pr11020323

关键词

rock physics template; rock physics diagnostics; tight gas sand reservoir; shallow marine sediments; Lower Goru formation

向作者/读者索取更多资源

In order to successfully discover and develop tight sand gas reserves, it is important to locate sand with specific features such as significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, representing these reservoir properties effectively using applicable parameters can be challenging due to the complex heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of the sandstone reservoirs in the Lower Goru Basin gas fields helps establish the link between reservoir parameters and seismic properties, allowing for a better understanding of the characteristics of unconsolidated reservoir sands.
For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir properties using applicable parameters is challenging due to the complicated heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of sandstone reservoirs from the Lower Goru Basin gas fields represents the link between reservoir parameters and seismic properties. Rock physics diagnostic models have been utilized to describe the reservoir sands of two wells inside this Middle Indus Basin, including contact cement, constant cement, and friable sand. The results showed that sorting the grain and coating cement on the grain's surface both affected the cementation process. According to the models, the cementation levels in the reservoir sands of the two wells ranged from 2% to more than 6%. The rock physics models established in the study would improve the understanding of characteristics for the relatively high V-p/V-s unconsolidated reservoir sands under study. Integrating rock physics models would improve the prediction of reservoir properties from the elastic properties estimated from seismic data. The velocity-porosity and elastic moduli-porosity patterns for the reservoir zones of the two wells are distinct. To generate a rock physics template (RPT) for the Lower Goru sand from the Early Cretaceous period, an approach based on fluid replacement modeling has been chosen. The ratio of P-wave velocity to S-wave velocity (V-p/V-s) and the P-impedance template can detect cap shale, brine sand, and gas-saturated sand with varying water saturation and porosity from wells in the Rehmat and Miano gas fields, both of which have the same shallow marine depositional characteristics. Conventional neutron-density cross-plot analysis matches up quite well with this RPT's expected detection of water and gas sands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据