4.7 Article

Changes in Disposition of Ezetimibe and Its Active Metabolites Induced by Impaired Hepatic Function: The Influence of Enzyme and Transporter Activities

期刊

PHARMACEUTICS
卷 14, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/pharmaceutics14122743

关键词

hepatic impairment; ezetimibe; active metabolites; phase II enzymes; transporters; first-pass metabolism; inhibitory bile acids

向作者/读者索取更多资源

This study demonstrates that hepatic impairment can affect the metabolism and transport of ezetimibe and its metabolites, and the increased plasma exposure of ezetimibe during hepatic dysfunction is attributed to decreased glucuronide conjugation, while the increased exposure of the metabolite is mainly related to transporter activity, particularly the inhibitory effects of bile acids on organic anion transporting polypeptides (OATPs) after oral administration.
Ezetimibe (EZE) is a selective cholesterol absorption inhibitor. Hepatic impairment significantly increases the systemic exposure of EZE and its main active phenolic glucuronide, EZE-Ph. Although changes in efflux transporter activity partly explain the changes in EZE-Ph pharmacokinetics, the causes of the changes to EZE and the effects of the administration route on EZE-Ph remain unclear. A carbon tetrachloride (CCl4)-induced hepatic failure rat model was combined with in vitro experiments to explore altered EZE and EZE-Ph disposition caused by hepatic impairment. The plasma exposure of EZE and EZE-Ph increased by 11.1- and 4.4-fold in CCl4-induced rats following an oral administration of 10 mg/kg EZE, and by 2.1- and 16.4-fold after an intravenous injection. The conversion of EZE to EZE-Ph decreased concentration-dependently in CCl4-induced rat liver S9 fractions, but no change was observed in the intestinal metabolism. EZE-Ph was a substrate for multiple efflux and uptake transporters, unlike EZE. In contrast to efflux transporters, no difference was seen in the hepatic uptake of EZE-Ph between control and CCl4-induced rats. However, bile acids that accumulated due to liver injury inhibited the uptake of EZE-Ph by organic anion transporting polypeptides (OATPs) (glycochenodeoxycholic acid and taurochenodeoxycholic acid had IC50 values of 15.1 and 7.94 mu M in OATP1B3-overexpressed cells). In conclusion, the increased plasma exposure of the parent drug EZE during hepatic dysfunction was attributed to decreased hepatic glucuronide conjugation, whereas the increased exposure of the metabolite EZE-Ph was mainly related to transporter activity, particularly the inhibitory effects of bile acids on OATPs after oral administration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据