4.7 Article

Seasonal shift in gut microbiome diversity in wild Sichuan takin (Budorcas tibetanus) and environmental adaptation

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csbj.2022.12.035

关键词

Sichuan takin; Budorcas tibetanus; Gut microbiome; Seasonal; Diversity; Microbiomes; Composition

向作者/读者索取更多资源

In this study, we investigated the change in microbiome composition of wild Sichuan takin (Budorcas tibetanus) during winter and spring and analyzed the physiological implications for such changes. Seasonal variation affects the gut microbiomes in wild Sichuan takins, with winter associated with lower species diversity and spring with enrichment of cellulose-degrading genera and phytopathogens. These changes were crucial in their adaptation to the environment, particularly the difference in food abundance.
In this study, we investigated the change in microbiome composition of wild Sichuan takin (Budorcas tibetanus) during winter and spring and analyzed the physiological implications for such changes. Diversity analyses of the microbiome (average 15,091 high-quality reads per sample) in 24 fecal samples (15 from winter, 9 from spring) revealed that spring samples had higher species diversity and were compositionally different from winter samples (P < 0.05). Taxonomic composition analysis showed that the relative abundance increased in spring for Patescibacteria (2.7% vs. 0.9% in winter, P < 0.001) and Tenericutes (1.9% vs. 1% in winter, P < 0.05). Substantial increases in relative abundance of Ruminococcaceae and Micrococcaceae were identified in spring and winter, respectively. Mann-Whitney U and ANCOM identified seven differentially abundant genera: Enterococcus, Acetitomaculum, Blautia, Coprococcus 1, Lachnospiraceae UCG 008, Ruminococcus 2 and Ralstonia. All seven genera were significantly more abundant in spring (average 0.016-1.2%) than winter (average 0-0.16%), with the largest difference found in Ruminococcus (1.21% in spring vs. 0.16% in winter). The other six genera were undetectable in winter. Functional prediction and pathway analysis revealed that biosynthesis of cofactors (ko01240) had the highest gene count ratios in the winter, followed by the two-component system (ko02020). Seasonal variation affects the gut microbiomes in wild Sichuan takins, with winter associated with lower species diversity and spring with enrichment of cellulose-degrading genera and phytopathogens. Such changes were crucial in their adaptation to the environment, particularly the difference in food abundance.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据