4.7 Article

Chilling-induced peach flavor loss is associated with expression and DNA methylation of functional genes

期刊

JOURNAL OF ADVANCED RESEARCH
卷 53, 期 -, 页码 17-31

出版社

ELSEVIER
DOI: 10.1016/j.jare.2022.12.003

关键词

DNA methylome; Fruit flavor; Cold storage; Regulatory network; Transcriptome; Transcription factors (TFs)

向作者/读者索取更多资源

This study reveals the mechanism behind flavor loss in peach fruit during cold storage through time-course transcriptome and DNA methylome analysis.
Introduction: Flavor is a major contributor to consumer preference. Despite being effective at extending the fruit's commercial life, cold storage also results in a significant loss of flavor volatiles. To date, there has been few studies on the metabolic dynamics and the mechanism underlying the regulatory networks that modulate flavor loss during cold storage for fruit. Methods: The volatile contents were detected by Gas Chromatography-Mass Spectrometer (GC-MS). Weighted gene co-expression network analysis (WGCNA) was used to identify structure genes and transcription factors (TFs). DNA methylation was analyzed by whole-genome methylation sequencing during cold storage. Results: We generated a temporal map, over hourly to weekly timescales, for the effects of chilling on flavor volatiles by combining metabolome, transcriptome, and DNA methylome in peach fruit. Based on the big data analysis, we developed a regulatory network for volatile formation and found that a decrease in volatiles during cold storage was significantly correlated with a decrease in the expression of synthesis genes. Moreover, TFs associated with these structure genes were identified. Expression of genes involved in ethylene biosynthesis was reduced while cold tolerance pathway was activated in response to low temperature. Functions of those genes were confirmed through transgenic experiments and across peach cultivars, suggesting our dataset is a useful tool for elucidating regulatory factors that have not yet been clarified in relation to flavor and cold tolerance. Genome wide DNA methylation was induced by chilling and peaked at 7 d followed by a decline during 28 d cold storage. Reduction of gene expression was accompanied by major changes in the methylation status of their promoters, including PpACS1, PpAAT1, PpTPS3 and PpMADS2. Conclusion: Our study revealed the mechanism for chilling-induced flavor loss of peach fruit through time-course transcriptome and DNA methylome analysis. (c) 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据