4.6 Article

Metabolic Adjustments following Glutaminase Inhibition by CB-839 in Glioblastoma Cell Lines

期刊

CANCERS
卷 15, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/cancers15020531

关键词

aspartate; cancer; cancer metabolism; CB-839; citrate; glioblastoma; glutaminase; glutamine; metabolic reprogramming; metabolomics

类别

向作者/读者索取更多资源

Using the GLS inhibitor CB-839, we observed significant changes in glutamine metabolism in three glioblastoma cell lines, including alterations in the tricarboxylic acid cycle and nucleotide biosynthesis pathways. The T98G cell line showed the most pronounced metabolite level modifications and increased levels of acetylated and methylated metabolites. CB-839 treatment also resulted in decreased levels of pyrimidine biosynthesis metabolites and accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. These findings provide insights for the development of future combination therapies with CB-839.
Simple Summary Glioblastoma multiforme is the most common primary brain tumor. Unfortunately, it is also one of the cancer types that has the worst morbidity and mortality ratios, so new targets and treatments need to be found. The metabolism of glutamine is fundamental for the proliferation of many tumor cells, including glioblastomas. Glutaminase isoenzyme GLS is one of the responsible enzymes for the pro-oncogenic pathways that induce metabolic reprogramming and leads to altered levels of some amino acids and other key intermediary metabolites in glioblastoma. Using the clinically approved GLS inhibitor CB-839 (Telaglenastat), we found significant changes in glutamine metabolism, including both the oxidative and reductive fates of Gln-derived alpha-ketoglutarate in the tricarboxylic acid cycle, in three glioblastoma cell lines. One of them, the T98G glioblastoma cell line, showed the greatest modification of metabolite levels involved in the de novo biosynthetic pathways for nucleotides, as well as a higher content of methylated and acetylated metabolites. Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We studied the metabolic effects of inhibiting GLS activity in T98G, LN229, and U87MG human glioblastoma cell lines by using the inhibitor CB-839. We performed metabolomics and isotope tracing experiments using U-C-13-labeled Gln, as well as N-15-labeled Gln in the amide group, to determine the metabolic fates of Gln carbon and nitrogen atoms. In the presence of the inhibitor, the results showed an accumulation of Gln and lower levels of tricarboxylic acid cycle intermediates, and aspartate, along with a decreased oxidative labeling and diminished reductive carboxylation-related labeling of these metabolites. Additionally, CB-839 treatment caused decreased levels of metabolites from pyrimidine biosynthesis and an accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. The levels of some acetylated and methylated metabolites were significantly increased, including acetyl-carnitine, trimethyl-lysine, and 5-methylcytosine. In conclusion, we analyzed the metabolic landscape caused by the GLS inhibition of CB-839 in human glioma cells, which might lead to the future development of new combination therapies with CB-839.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据