4.8 Article

Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength

期刊

NPJ COMPUTATIONAL MATERIALS
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-022-00926-0

关键词

-

资金

  1. Office of Naval Research of the United States under the Small Business Technology Transfer program [N68335-20-C-0402]

向作者/读者索取更多资源

This study demonstrates a method of intelligently exploring the compositional space of refractory high-entropy alloys (RHEAs) through a machine learning framework and optimization methods, successfully discovering RHEA alloys with superior high-temperature yield strengths.
Refractory high-entropy alloys (RHEAs) show significant elevated-temperature yield strengths and have potential to use as high-performance materials in gas turbine engines. Exploring the vast RHEA compositional space experimentally is challenging, and a small fraction of this space has been explored to date. This work demonstrates the development of a state-of-the-art machine learning framework coupled with optimization methods to intelligently explore the vast compositional space and drive the search in a direction that improves high-temperature yield strengths. Our yield strength model is shown to have a significantly improved predictive accuracy relative to the state-of-the-art approach, and also provides inherent uncertainty quantification through the use of repeated k-fold cross-validation. Upon developing and validating a robust yield strength prediction model, the coupled framework is used to discover RHEAs with superior high temperature yield strength. We have shown that RHEA compositions can be customized to have maximum yield strength at a specific temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据