4.8 Article

Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries

期刊

SCIENCE ADVANCES
卷 8, 期 44, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abq6321

关键词

-

资金

  1. Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]
  2. NSF MRSEC program [DMR-1719875]

向作者/读者索取更多资源

This study investigates the influence of surface chemistry on the reversibility of electrochemical transformations at rechargeable battery electrodes. The results show that a moderate strength of chemical interaction enables the highest reversibility and stability of the plating/stripping redox processes.
How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate-neither too weak nor too strong-enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode-to-positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据