4.6 Article

Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries

期刊

NATURE ENERGY
卷 8, 期 2, 页码 129-137

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41560-022-01176-6

关键词

-

向作者/读者索取更多资源

Electrically conductive polymers with hierarchically ordered structures (HOS) show significant enhancement in charge transport properties and mechanical robustness, making them critical for practical lithium-ion batteries. The conventional design of conductive polymers using bottom-up synthetic approaches and functional group modification has limitations that restrict their scaled synthesis and broad applications. By using simple primary building blocks and thermal processing, we developed conductive polymers with HOS, enabling exceptional cycling performance in lithium-ion batteries.
Electrically conductive polymers have found increasing applications in energy conversion and storage devices. In the conventional design of conductive polymers, organic functionalities are introduced via bottom-up synthetic approaches to enhance specific properties by modification of the individual polymers. Unfortunately, the addition of functional groups leads to conflicting effects, limiting their scaled synthesis and broad applications. Here we show a conductive polymer with simple primary building blocks that can be thermally processed to develop hierarchically ordered structures (HOS) with well-defined nanocrystalline morphologies. Our approach to constructing permanent HOS in conductive polymers leads to substantial enhancement of charge transport properties and mechanical robustness, which are critical for practical lithium-ion batteries. Finally, we demonstrate that conductive polymers with HOS enable exceptional cycling performance of full cells with high-loading micron-size SiOx-based anodes, delivering areal capacities of more than 3.0 mAh cm(-2) over 300 cycles and average Coulombic efficiency of > 99.95%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据