4.6 Article

Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries

期刊

ACS ENERGY LETTERS
卷 8, 期 1, 页码 179-188

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.2c02003

关键词

-

向作者/读者索取更多资源

A new low-dielectric solvent, 1,2-dimethoxypropane (DMP), was introduced as an electrolyte solvent. Compared to 1,2-dimethoxyethane (DME), DMP has decreased solvation power and increased solvation polarity, promoting anion-Li+ interactions and improving the cycling stability of the battery.
1,2-Dimethoxyethane (DME) has been widely used as an electrolyte solvent for lithium metal batteries on account of its intrinsic reductive stability; however, its low oxidative stability presents a major challenge for use in high-voltage Li metal batteries (LMBs). In this direction, herein, we introduce a new low-dielectric solvent, 1,2-dimethoxypropane (DMP), as an electrolyte solvent. Compared to DME, DMP has decreased solvation power owing to its increased steric effects, thus promoting anion-Li+ interactions. This controlled solvation structure of the 2 M LiFSI-in-DMP electrolyte facilitated the formation of an anion-driven, stable interface at the lithium metal anode and oxidative stability for compatibility with widely adopted cathodes to afford Li|LiFePO4 and Li| LiNi0.8Co0.1Mn0.1O2 cells with decent cycling stability. These results imply the usefulness of steric control as an alternative strategy to commonly used fluorination to fine-tune the solvation power and, in general, the design of new solvents for practical lithium metal batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据