4.7 Article

Microstructure, mechanical and tribological properties of oxide dispersion strengthened CoCrFeMnNi high-entropy alloys fabricated by powder metallurgy

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2022.12.070

关键词

High entropy alloys; Dispersion strengthening; Microstructural evolution; Mechanical properties; Tribology

向作者/读者索取更多资源

This study focuses on enhancing the strength and wear resistance of face-centered cubic (FCC)-structured CoCrFeMnNi high entropy alloy (HEA) by incorporating HfO2 nanoparticles (NPs) through a powder metallurgy approach. The results reveal that the addition of HfO2 increases the hardness and compressive yield strength of the alloy, while reducing the coefficient of friction and wear rates. This study demonstrates the feasibility of producing high-performance oxide dispersion-strengthened HEAs for advanced structural applications.
Developing materials with superior strength and wear resistance has always drawn chal-lenging research for advanced engineering applications. Herein, considerable efforts have been devoted to enhancing the strength and wear resistance of face-centered cubic (FCC)-structured CoCrFeMnNi high entropy alloy (HEA) by incorporating HfO2 nanoparticles (NPs) through a powder metallurgy approach. The phase composition, microstructure, me-chanical, and tribological properties of HEA composites were investigated. The XRD results reveal that the composite powders consisted of the FCC solid solution along with minor HfO2 phases. In addition, sintered HEAs showed the major FCC phase along with minor Cr-rich and HfO2 phases. Microscopic results confirmed the uniform distribution of HfO2 NPs throughout the matrix during the milling process. With increasing HfO2 contents, the hardness of the HEAs increased from 270 +/- 10 to 520 +/- 10 HV, while the compressive yield strength increased from 370 to 1500 MPa, due to dispersion and grain boundary strength-ening effects. Furthermore, composite HEAs showed a decrease in coefficient of friction and wear rates with increasing HfO2 content due to increased surface hardness and transition in wear mechanism from severe wear to mild abrasive wear. The present study demonstrates the feasibility of producing high-performance oxide dispersion-strengthened HEAs for advanced structural applications.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据