4.5 Review

Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient Perovskite Solar Cells

期刊

CHEMNANOMAT
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cnma.202200471

关键词

Buffer layer; ETL; HTL; intrinsic and extrinsic stability issues; Perovskite solar cells

向作者/读者索取更多资源

Perovskite solar cells (PSCs) are considered as promising contenders for the future generation of photovoltaic technology due to their high conversion efficiency and simple manufacturing procedure. However, the commercial mass production of PSCs is still far away due to stability and eco-friendly material issues.
Perovskite solar cells (PSCs) are intriguing and viable challengers among all solar photovoltaic (PV) technologies worldwide due to their high conversion efficiency and simple manufacturing procedure. PSCs are currently thought to be very promising for the future generation of PV technology, which can make it easier to solving the rising energy demand. However, commercial mass production of PSCs is still far away due to their stability, and eco-friendly material issues. Extrinsic degradation is one of the vital issues for PSCs and various approaches are proposed and developed by researchers towards improve the quality and the stability of perovskite and other active materials for a PSC with longer lifetime. In this article, we conduct a systematic study to identify the major intrinsic and extrinsic degradation factors, and the degradation mechanism of PSCs. We investigate the potential approaches related to improving the stability and performance of the PSCs including encapsulation, interfacial layer engineering, additive engineering, ion engineering, and fabrication techniques. We also briefly point out the recent promising approaches to improve stability and power conversion efficiency (PCE) under various harsh conditions. This review will provide a better insight into the present scenario of the PSC as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据