4.7 Article

Anomalously High Heat Flow Regions Beneath the Transantarctic Mountains and Wilkes Subglacial Basin in East Antarctica Inferred From Curie Depth

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022JB025423

关键词

geothermal heat flow; Curie depth point; East Antarctica; solid earth

向作者/读者索取更多资源

Through high resolution magnetic airborne measurements, this study reveals the variations in crustal depth and geothermal heat flow distribution in the Transantarctic Mountains of Antarctica. The results indicate shallow Curie Point Depth (CPD) and high geothermal heat flow in the mountain range, supporting the hypothesis of thermal support of the topography.
The Transantarctic Mountains (TAMs) separate the warmer lithosphere of the Cretaceous-Tertiary West Antarctic rift system and the colder and older provinces of East Antarctica. Low velocity zones beneath the TAM imaged in recent seismological studies have been interpreted as warm low-density mantle material, suggesting a strong contribution of thermal support to the uplift of the TAM. We present new Curie Point Depth (CPD) and geothermal heat flow (GHF) maps of the northern TAM and adjacent Wilkes Subglacial Basin (WSB) based exclusively on high resolution magnetic airborne measurements. We find shallow CPD and high GHF beneath the northern TAM, reinforcing the hypothesis of thermal support of the topography of the mountain range. Additionally, this study demonstrates, that limiting spectral analysis to areas with a high density of aeromagnetic measurements increases the resolution of CPD estimates revealing localized shallow CPD and associated high heat flow in the Central Basin of the WSB and the Rennick Graben (RG). Across the study area the CPD ranges from 15 to 35 km and the GHF values range from 30 to 110 mW/m(2). The recovered CPD range is compatible with recent Moho depth estimates, as the CPD predominantly lies within the crust, rather than in the magnetite-poor mantle. GHF estimates, based on the CPD estimates, show a good agreement to sparse in situ GHF measurements and the location of active volcanoes. Comparison to existing continent-wide GHF estimates shows strong differences from magnetically-derived heat flow estimates, while seismologically-derived heat flow estimates show the best agreement to our results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据