4.7 Article

The role of DNA methylation in the maintenance of phenotypic variation induced by grafting chimerism in Brassica

期刊

HORTICULTURE RESEARCH
卷 10, 期 3, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/hr/uhad008

关键词

-

向作者/读者索取更多资源

Grafting enables interaction between cells with different genomes, leading to phenotypic variation for crop improvement. Graft chimeras, especially periclinal chimeras, are excellent models to study the mechanisms of grafting-induced variation maintenance.
Grafting facilitates the interaction between heterologous cells with different genomes, resulting in abundant phenotypic variation, which provides opportunities for crop improvement. However, how grafting-induced variation occurs and is transmitted to progeny remains elusive. A graft chimera, especially a periclinal chimera, which has genetically distinct cell layers throughout the plant, is an excellent model to probe the molecular mechanisms of grafting-induced variation maintenance. Here we regenerated a plant from the T-cell layer of a periclinal chimera, TCC (where the apical meristem was artificially divided into three cell layers - from outside to inside, L1, L2, and L3; T = Tuber mustard, C = red Cabbage), named rTTT0 (r = regenerated). Compared with the control (rsTTT, s = self-grafted), rTTT0 had multiple phenotypic variations, especially leaf shape variation, which could be maintained in sexual progeny. Transcriptomes were analyzed and 58 phenotypic variation-associated genes were identified. Whole-genome bisulfite sequencing analyses revealed that the methylome of rTTT0 was changed, and the CG methylation level was significantly increased by 8.74%. In rTTT0, the coding gene bodies are hypermethylated in the CG context, while their promoter regions are hypomethylated in the non-CG context. DNA methylation changes in the leaf shape variation-associated coding genes, ARF10, IAA20, ROF1, and TPR2, were maintained for five generations of rTTT0. Interestingly, grafting chimerism also affected transcription of the microRNA gene (MIR), among which the DNA methylation levels of the promoters of three MIRs associated with leaf shape variation were changed in rTTT0, and the DNA methylation modification of MIR319 was maintained to the fifth generation of selfed progeny of rTTT0 (rTTT5). These findings demonstrate that DNA methylation of coding and non-coding genes plays an important role in heterologous cell interaction-induced variation formation and its transgenerational inheritance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据