4.7 Article

Zebrafish Tric-b is required for skeletal development and bone cells differentiation

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2023.1002914

关键词

zebrafish; TRIC-B; osteogenesis imperfecta; bone; fin regeneration; collagen; endoplasmic reticulum

向作者/读者索取更多资源

This study used zebrafish to investigate the role of TRIC-B in skeletal tissue. The researchers found that the tmem38b gene is expressed at early developmental stages in zebrafish, while tmem38a gene is not. Mutations in tmem38b resulted in under-modified collagen type I and intracellular retention. These findings contribute to our understanding of the importance of TRIC-B in bone cell differentiation.
IntroductionTrimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP(3)Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. ResultsIn this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b(-/-)) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38b(Delta 120-7/Delta 120-7)). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b(-/-) showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38b(Delta 120-7/Delta 120-7) bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. DiscussionOur data support the requirement of Tric-b during early development and for bone cell differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据