4.7 Review

A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2022.1084236

关键词

microplastics; nanoplastics; mammalian endocrine system; endocrine abnormalities; endocrine disrupting chemicals; plastic additives; environmental pollution

向作者/读者索取更多资源

The vast expansion of plastic manufacturing has led to the increased environmental impact of microplastics and nanoplastics, posing a threat to marine and terrestrial life due to the presence of endocrine disrupting chemicals and other harmful compounds. These plastics can absorb and transport harmful chemicals commonly used in plastic production, which can easily leach into liquids and affect the endocrine system of mammals. The size-dependent bioaccumulation, distribution, and translocation of microplastics and nanoplastics can have deleterious effects on mammalian endocrine components, leading to various health issues such as oxidative stress, reproductive toxicity, neurotoxicity, developmental abnormalities, decreased sperm quality, and immunotoxicity. More research is needed to understand the direct effects of these plastics on the hypothalamus, pituitary, and adrenal glands.
Over the years, the vaste expansion of plastic manufacturing has dramatically increased the environmental impact of microplastics [MPs] and nanoplastics [NPs], making them a threat to marine and terrestrial biota because they contain endocrine disrupting chemicals [EDCs] and other harmful compounds. MPs and NPs have deleteriouse impacts on mammalian endocrine components such as hypothalamus, pituitary, thyroid, adrenal, testes, and ovaries. MPs and NPs absorb and act as a transport medium for harmful chemicals such as bisphenols, phthalates, polybrominated diphenyl ether, polychlorinated biphenyl ether, organotin, perfluorinated compounds, dioxins, polycyclic aromatic hydrocarbons, organic contaminants, and heavy metals, which are commonly used as additives in plastic production. As the EDCs are not covalently bonded to plastics, they can easily leach into milk, water, and other liquids affecting the endocrine system of mammals upon exposure. The toxicity induced by MPs and NPs is size-dependent, as smaller particles have better absorption capacity and larger surface area, releasing more EDC and toxic chemicals. Various EDCs contained or carried by MPs and NPs share structural similarities with specific hormone receptors; hence they interfere with normal hormone receptors, altering the hormonal action of the endocrine glands. This review demonstrates size-dependent MPs' bioaccumulation, distribution, and translocation with potential hazards to the endocrine gland. We reviewed that MPs and NPs disrupt hypothalamic-pituitary axes, including the hypothalamic-pituitary-thyroid/adrenal/testicular/ovarian axis leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, decreased sperm quality, and immunotoxicity. The direct consequences of MPs and NPs on the thyroid, testis, and ovaries are documented. Still, studies need to be carried out to identify the direct effects of MPs and NPs on the hypothalamus, pituitary, and adrenal glands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据