4.5 Article

Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm

期刊

JOURNAL OF PROTEOMICS
卷 137, 期 -, 页码 97-106

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jprot.2016.01.010

关键词

Mytilus edulis; Shotgun proteomics; Propranolol; Low salinity; Environmental monitoring; Climate change

资金

  1. Swedish Research Council-Natural Science
  2. VR-NT
  3. Carl Trygger Foundation
  4. Oscar and Lilli Lamms Minne Foundation
  5. Angpanneforening Research Foundation
  6. Magnus Bergsvall Foundation
  7. IKERBASQUE
  8. Basque Foundation for Science
  9. VINNOVA
  10. County Council of Ostergotland
  11. County Council of Sweden
  12. County Council of Linkoping University, Sweden

向作者/读者索取更多资源

Pharmaceuticals, among them thep-adrenoceptor blocker propranolol, are an important group of environmental contaminants reported in European waters. Laboratory exposure to pharmaceuticals on marine species has been performed without considering the input of the ecosystem flow. To unravel the ecosystem response to long-term exposure to propranolol we have performed long-term exposure to propranolol and low salinity in microcosms. We applied shotgun proteomic analysis to gills of Mytilus edulis from those Baltic Sea microcosms and identified 2071 proteins with a proteogenomic strategy. The proteome profiling patterns from the 587 highly reproductive proteins among groups define salinity as a key factor in the mussel's response to propranolol. Exposure at low salinity drives molecular mechanisms of adaptation based on a decrease in the abundance of several cytoskeletal proteins, signalling and intracellular membrane trafficking pathway combined with a response towards the maintenance of transcription and translation. The exposure to propranolol combined with low salinity modulates the expression of structural proteins including cilia functions and decreases the expression of membrane protein transporters. This study reinforces the environment concerns of the impact of low salinity in combination with anthropogenic pollutants and anticipates critical physiological conditions for the survival of the blue mussel in the northern areas. Biological significance: Applying shotgun proteomic analysis to M. edulis gills samples from a long-term microcosm exposure to propranolol and following a proteogenomic identification strategy, we have identified 2071 proteins. The proteomic analysis unrevealed which molecular mechanisms drive the adaptation to low salinity stress and how salinity modulates the effects of exposure to propranolol. These results reinforce the idea of the impact of low salinity in combination with anthropogenic pollutants and anticipate critical physiological condition. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据