4.5 Article

Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

期刊

JOURNAL OF PROTEOMICS
卷 143, 期 -, 页码 209-226

出版社

ELSEVIER
DOI: 10.1016/j.jprot.2016.05.031

关键词

Drought tolerance; Leaf proteins; Protein-protein interaction; Two-dimensional electrophoresis; Water stress

资金

  1. National Science Foundation-Research Experience for Undergraduate Students [1156900]
  2. Faculty Research Award Program [002257]
  3. Japan Society for the Promotion of Science [510187, S-14088]
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [1156900] Funding Source: National Science Foundation

向作者/读者索取更多资源

Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse drought tolerance characteristics were subjected to WS, and their leaf proteome was compared using two-dimensional electrophoresis complemented with MALDI-TOF/FOF mass spectrometry. Ninety-six protein spots were differentially abundant to water stress in both cultivars that corresponded to 60 non-redundant proteins. Protein interaction prediction analysis suggests that 42 unique proteins showed interactions in tolerant cultivar while 20 showed interactions in the susceptible cultivar, activating other proteins in directed system response networks. Four proteins: glutamine ammonia ligase, chitin class II, actin isoform B, and beta tubulin, involved in metabolism, defense and cellular biogenesis, are unique in tolerant cultivar and showed positive interactions with other proteins. In addition, four proteins: serine/threonine protein phosphate PP1, choline monooxygenase, peroxidase 43, and SNFl-related protein kinase regulatory subunit beta-2, that play a role as cryoprotectants through signal transduction, were induced in drought tolerant cultivar following WS. Eleven interologs of these proteins were found in Arabidopsis interacting with several proteins and it is believed that similar mechanisms/pathways exist in peanut. Significance: Peanuts (Arachis hypogaea L) are a major source of plant protein grown in subtropical and tropical regions of the world. Pre-harvest aflatoxin contamination is a major problem that affects peanut crop yield and food safety. Poor understanding of molecular and cellular mechanisms associated with aflatoxin resistance is largely responsible for the lack of progress in elucidating a process/methodology for reducing aflatoxin contamination in peanuts. Drought perturbs the invasion of the aflatoxin producing fungus and thus affects the quality and yield of peanut. Therefore, more studies involving the effects of drought stress to determine the molecular changes will enhance our understanding of the key metabolic pathways involved in the combined stresses. The changes associated with the biotic and abiotic interactions within the peanut will be used to determine the metabolic pathways involved in the stress tolerance. This research would be beneficial in identifying the tolerant molecular signatures and promoting food safety and consumer health through breeding superior quality peanut cultivars. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据