4.7 Article

Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress

期刊

JOURNAL OF PROTEOME RESEARCH
卷 15, 期 12, 页码 4464-4475

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jproteome.6b00572

关键词

soybean; flooding stress; root; aluminum oxide nanoparticles; mitochondria; proteomics

资金

  1. JSPS KAKENHI [16K14841]
  2. Grants-in-Aid for Scientific Research [16K14841] Funding Source: KAKEN

向作者/读者索取更多资源

Rapid developments in nanotechnology have led to the increasing use of nanoparticles (NPs) in the agricultural sector. For possible interactions between NPs and crops under flooding stress to be investigated, the molecular mechanisms in soybeans affected by exposure to various sizes of Al2O3 NPs were analyzed using a proteomic technique. In plants exposed to 30-60 nm Al2O3 NPs, the length of the root including hypocotyl was increased, and proteins related to glycolysis were suppressed. Exposure to 30-60 nm Al2O3 NPs mediated the scavenging activity of cells by regulating the ascorbate/glutathione pathway: Hierarchical clustering analysis indicated that ribosomal proteins were also increased upon exposure to flooding-stressed plants with 30-60 nm Al2O3 NPs. Mitochondrion was the target organelle of Al2O3 NPs under flooding-stress conditions. Mitochondrial proteomic analysis revealed that the abundance of voltage-dependent anion channel protein was increased upon exposure to flooding-stressed soybeans with 135 nm Al2O3 NPs, indicating the permeability of the mitochondrial membrane was increased. Furthermore, isocitrate dehydrogenase was increased upon exposure of plants to 5 nm Al2O3 NPs under flooding conditions. These results suggest that Al2O3 NPs of various sizes affect mitochondrial proteins under flooding stress by regulating membrane permeability and tricarboxylic acid cycle activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据