4.7 Article

Coherent control of electron spin qubits in silicon using a global field

期刊

NPJ QUANTUM INFORMATION
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41534-022-00645-w

关键词

-

资金

  1. Australian Research Council [DE190101397, FL190100167, CE170100012]
  2. US Army Research Office [W911NF-17-1-0198]
  3. NSW Node of the Australian National Fabrication Facility
  4. Sydney Quantum Academy
  5. Australian Research Council [FL190100167, DE190101397] Funding Source: Australian Research Council

向作者/读者索取更多资源

This study reports the coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.
Silicon spin qubits promise to leverage the extraordinary progress in silicon nanoelectronic device fabrication over the past half century to deliver large-scale quantum processors. Despite the scalability advantage of using silicon technology, realising a quantum computer with the millions of qubits required to run some of the most demanding quantum algorithms poses several outstanding challenges, including how to control many qubits simultaneously. Recently, compact 3D microwave dielectric resonators were proposed as a way to deliver the magnetic fields for spin qubit control across an entire quantum chip using only a single microwave source. Although spin resonance of individual electrons in the globally applied microwave field was demonstrated, the spins were controlled incoherently. Here we report coherent Rabi oscillations of single electron spin qubits in a planar SiMOS quantum dot device using a global magnetic field generated off-chip. The observation of coherent qubit control driven by a dielectric resonator establishes a credible pathway to achieving large-scale control in a spin-based quantum computer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据