4.6 Article

Preparation of TiNbTaZrMo high-entropy alloy with tunable Young's modulus by selective laser melting

期刊

JOURNAL OF MANUFACTURING PROCESSES
卷 85, 期 -, 页码 160-165

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmapro.2022.11.046

关键词

Selective laser melting; Bio-HEA; TPMS lattice; Young's modulus

向作者/读者索取更多资源

Biological high-entropy alloy (Bio-HEA) is a promising biomedical alloy with excellent mechanical properties and biocompatibility. Selective laser melting (SLM) technique is used to fabricate dense blocks with low Young's modulus and good compression property at room temperature. Triply periodic minimal surface (TPMS) lattice in the HEA structure, with Young's modulus close to that of human trabecular bone, allows for customization of shape and porosity, enabling Bio-HEA to meet various bone implant requirements.
Biological high-entropy alloy (Bio-HEA) is a new generation of biomedical alloys with excellent mechanical properties and good biocompatibility. However, elemental segregation often exists during conventional casting or arc melting, which dramatically degrades their mechanical performance. Here, we utilized the selective laser melting (SLM) technique to fabricate dense blocks with low Young's modulus and good compression property at room temperature. Then, we fabricated HEA with triply periodic minimal surface (TPMS) lattice, which has Young's modulus (6.71-16.21 GPa) very close to that of human trabecular bone. This structure provides the possibility of meeting the requirement of various bone implants by customizing the shape and porosity of the TPMS lattice, affirming the possibility of Bio-HEA for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据