4.6 Article

Imaging of glutamate in acute carbon monoxide poisoning using chemical exchange saturation transfer

期刊

FRONTIERS IN NEUROLOGY
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fneur.2023.1065490

关键词

carbon monoxide poisoning; chemical exchange saturation transfer; CO poisoning; GluCEST; glutamate

向作者/读者索取更多资源

This study used the Glutamate Chemical Exchange Saturation Transfer (GluCEST) imaging technique to analyze cranial glutamate quantitatively and discussed its effectiveness in identifying the pathogenesis of encephalopathy after CO poisoning. MRI scans were performed on two cohorts, and comparisons were made for GluCEST% in different regions of interest. The results showed that GluCEST% was significantly higher in the CO group compared to the control group, and there was a correlation between GluCEST% and cognitive function. The GluCEST technique can provide early detection of cerebral biochemical changes after acute CO poisoning, contributing to the understanding of this disease.
AimsThis study adopted the Glutamate Chemical Exchange Saturation Transfer (GluCEST) imaging technique to quantitatively analyze cranial glutamate and discussed the effectiveness of GluCEST values in identifying the pathogenesis of encephalopathy after CO poisoning. MethodsThe routine MRI and functional MRI scans of two cohorts of subjects (CO group, n = 29; Control group, n = 21) were performed. Between-group comparisons were conducted for GluCEST% in regions of interest (ROI), including the basal ganglia, the thalamus, the frontal lobe, the occipital lobe, the genu of corpus callosum, the cingulate gyrus, and the cuneus. Moreover, an age-stratified subgroup analysis was devised, and a correlational analysis was performed for GluCEST% in each ROI, including the time in coma, Simple Mini-Mental State Examination Scale (MMSE) score, Hamilton Anxiety Scale score, and blood COHb%. ResultsAs compared to the healthy control, the CO group led to significantly increasing GluCEST% in the basal ganglia, the occipital lobe, the genu of the corpus callosum, the cingulate gyrus, and the cuneus (p < 0.05). In the subgroup analysis for age, adult patients had higher GluCEST% in the basal ganglia, the thalamus, the occipital lobe, the cingulate gyrus, and the cuneus compared to healthy adults (p < 0.05). In addition, the correlational analysis of CO-poisoned patients revealed a statistical association between the GluCEST% and the MMSE in the thalamus and the genu of the corpus callosum. ConclusionThe GluCEST technique is superior to routine MRI in that it can identify the cerebral biochemical changes sooner after acute CO poisoning, which is significant for our understanding of the role of neurotransmitters in the pathological basis of this disease. Brain injury caused by CO poisoning may be different in adults and children.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据