4.8 Article

Topical Skullcapflavone II attenuates atopic dermatitis in a mouse model by directly inhibiting associated cytokines in different cell types

期刊

FRONTIERS IN IMMUNOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2022.1064515

关键词

Skullcapflavone II; atopic dermatitis; pruritus; Th2 cytokines; IgE

资金

  1. Bio & Medical Technology Development Program of the National Research Foundation (NRF) - Ministry of Science and ICT [2019M3A9I3091696]
  2. YANGYOUNG FOUNDATION
  3. National Research Foundation of Korea [2019M3A9I3091696] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

SFII demonstrated anti-inflammatory effects in atopic dermatitis therapy, effectively suppressing inflammation, cytokine production, and cell infiltration, indicating therapeutic potential.
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, is an anticancer agent. We aimed to validate SFII for atopic dermatitis (AD) therapy by demonstrating the anti-inflammatory effects of SFII in an AD mouse model produced by the topical application of the vitamin D3 analog MC903. We showed that topical treatment with SFII significantly suppressed MC903-induced serum IgE levels compared with topical hydrocortisone (HC) treatment. Topical SFII also prevents MC903-induced pruritus, skin hyperplasia, and inflammatory immune cell infiltration into lesional skin comparable to topical HC. In addition, MC903-induced immune cell chemoattractants and AD-associated cytokine production in skin lesions were effectively suppressed by topical SFII. The production of MC903-induced effector cytokines influencing T helper (Th)2 and Th17 polarization in lesioned skin is significantly inhibited by topical SFII. Furthermore, we showed that SFII can directly inhibit the production of AD-associated cytokines by human primary keratinocytes, mouse bone marrow-derived cells (BMDCs), and mouse CD4(+) T cells in vitro. Lastly, we demonstrated that topical SFII more effectively suppressed serum IgE levels, the production of IL-4 and thymic stromal lymphopoietin (TSLP), and infiltration of CD4(+) T cells and Gr-1(+) cells (neutrophils) into lesion skin compared to topical baicalein (a flavonoid derived from Scutellaria baicalensis), which has anti-inflammatory effects. Taken together, our findings suggest that SFII may have promising therapeutic potential for this complex disease via the regulation of multiple AD-associated targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据