4.8 Article

Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers

期刊

FRONTIERS IN IMMUNOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2022.1025330

关键词

deep learning; immunotherapy; cancer; PD1; PD-L1; ELISE

资金

  1. National Natural Science Foundation of China
  2. Natural Science Foundation of Chongqing
  3. Chongqing Science and Health Joint Medical High-end Talent Project
  4. Science and Technology Research Program of Chongqing Municipal Education Commission
  5. CQMU Program for Youth Innovation in Future Medicine
  6. [81871653]
  7. [cstc2020jcyj-msxmX0159]
  8. [2022GDRC012]
  9. [KJZD-K202100402]
  10. [KJQN201900449]
  11. [W0073]

向作者/读者索取更多资源

This study proposes a reliable approach to predict individual responses to immunotherapies using ensemble learning and self-attention mechanism. The proposed model, ELISE, demonstrated high accuracy in predicting responses to different immunotherapeutic agents in various cancer types.
IntroductionDespite the many benefits immunotherapy has brought to patients with different cancers, its clinical applications and improvements are still hindered by drug resistance. Fostering a reliable approach to identifying sufferers who are sensitive to certain immunotherapeutic agents is of great clinical relevance. MethodsWe propose an ELISE (Ensemble Learning for Immunotherapeutic Response Evaluation) pipeline to generate a robust and highly accurate approach to predicting individual responses to immunotherapies. ELISE employed iterative univariable logistic regression to select genetic features of patients, using Monte Carlo Tree Search (MCTS) to tune hyperparameters. In each trial, ELISE selected multiple models for integration based on add or concatenate stacking strategies, including deep neural network, automatic feature interaction learning via self-attentive neural networks, deep factorization machine, compressed interaction network, and linear neural network, then adopted the best trial to generate a final approach. SHapley Additive exPlanations (SHAP) algorithm was applied to interpret ELISE, which was then validated in an independent test set. ResultRegarding prediction of responses to atezolizumab within esophageal adenocarcinoma (EAC) patients, ELISE demonstrated a superior accuracy (Area Under Curve [AUC] = 100.00%). AC005786.3 (Mean [|SHAP value|] = 0.0097) was distinguished as the most valuable contributor to ELISE output, followed by SNORD3D (0.0092), RN7SKP72 (0.0081), EREG (0.0069), IGHV4-80 (0.0063), and MIR4526 (0.0063). Mechanistically, immunoglobulin complex, immunoglobulin production, adaptive immune response, antigen binding and others, were downregulated in ELISE-neg EAC subtypes and resulted in unfavorable responses. More encouragingly, ELISE could be extended to accurately estimate the responsiveness of various immunotherapeutic agents against other cancers, including PD1/PD-L1 suppressor against metastatic urothelial cancer (AUC = 88.86%), and MAGE-A3 immunotherapy against metastatic melanoma (AUC = 100.00%). DiscussionThis study presented deep insights into integrating ensemble deep learning with self-attention as a mechanism for predicting immunotherapy responses to human cancers, highlighting ELISE as a potential tool to generate reliable approaches to individualized treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据