4.6 Article

Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract

期刊

CRYSTALS
卷 13, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/cryst13020172

关键词

green synthesis; zinc oxide nanoparticle; photocatalytic; textile Orange 16 reactive dye

向作者/读者索取更多资源

The green synthesis approach using Punic granatum plant leaf extract successfully produced environmentally friendly zinc oxide nanoparticles. Characterization using various techniques revealed that the nanoparticles were crystalline, with an average diameter of 20 nm. The synthesized nanoparticles demonstrated effective photocatalytic oxidation of reactive dye in water, advancing the development of green photocatalysts for dye removal.
Since it does not use any dangerous chemicals and is a simple, low-cost process, the green synthesis approach for nanoparticle creation has several benefits compared to the physical and chemical synthesis routes. The current study describes an environmentally friendly synthesis of zinc oxide (ZnO) nanoparticles (NPs) using an extract of Punica granatum plant leaves. Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometer (UV-Vis), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques were used to characterize the morphology, composition, and structural properties of the synthesized zinc oxide nanoparticles. The XRD pattern reveals that the ZnO nanoparticles are crystalline and have a diameter of 20 nm. According to the FESEM studies, the ZnO-NPs have sizes ranging from 50 to 100 nm on average and are almost spherical. When exposed to direct sunlight, the produced ZnO-NPs demonstrate impressive photocatalytic oxidation of textile Orange 16, a reactive dye. As a result, our research advances the development of a green photocatalyst for the removal of harmful dyes from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据