4.6 Article

Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS

期刊

APPLIED SCIENCES-BASEL
卷 12, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/app122412752

关键词

InSAR; subsidence; time series; GNSS; GACOS

向作者/读者索取更多资源

This study used InSAR and GNSS data to monitor surface subsidence in Kunming city, verifying the effectiveness of InSAR data and analyzing the extent and impact of subsidence. The results showed varying degrees of subsidence in different areas.
Kunming city is located in the middle of Yunnan Province. Due to large-scale groundwater exploitation and urban development in recent years, this area has been affected by surface subsidence. In this paper, Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) data are used to monitor the surface subsidence in Kunming city area for better analysis and understanding. The study used data of Sentinel-1A from 2018 to 2020 with atmospheric correction based on GACOS to calculate the average annual subsidence rate in Kunming city area, and the results show that the maximum subsidence rate is 48 mm/year. The subsidence obtained by InSAR is compared with the vertical deformation information obtained by eight GNSS stations in continuous operation in the study area. The subsidence rate trend show by the two methods is consistent, which further verifies the validity of InSAR data to reflect the local deformation. Experimental results shown that the eastern and northeastern Dianchi lake areas were affected by underground resources mining, and the induced surface subsidence characteristics were obvious, with the surface subsidence rate reachde 48 mm/year and 37 mm/year respectively. The Kunyang Phosphate Mine also had different degrees of mining subsidence disaster, with the maximum subsidence rate reached 36 mm/year. The subsidence rate of InSAR and GNSS has the same trend on the whole. However, GNSS sites are generally located in stable areas, the settlement amount obtained in the same time period is somewhat different from that of InSAR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据