4.6 Article

The Effect and the Potential Use of Magnetic-Dam Barrier in Guided Bone Regeneration: A Laboratory Study

期刊

APPLIED SCIENCES-BASEL
卷 13, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/app13031625

关键词

guided bone regeneration; magnetic dam; membrane barrier; neodymium-iron-boron; static magnetic fields

向作者/读者索取更多资源

The use of a custom-made magnetic rubber dam has the potential to generate a static magnetic field and significantly affect cell proliferation, which could lead to significant improvements in guided bone regeneration.
Guided bone regeneration (GBR) has been shown to be an optimal technique to accelerate the bone regeneration process thanks to the action of membrane barriers that promote tissue healing through the process of osteogenesis, inducing the repopulation with osteoprogenitor cells that prevent the invasion of non-osteogenic tissue. However, current membranes, such as expanded polytetrafluoroethylene or rubber dam, have some disadvantages that could potentially reduce the effectiveness of GBR. Recently, some scaffolds with magnetic properties have been tested to promote rapid osteogenesis. The aim of this laboratory study was to evaluate the intensity of the magnetic field generated by a custom-made rubber dam magnetised with neodymium-iron-boron (Nd2F14B) (three layers of latex filled with Nd2F14B powder on the inner surface) and to understand the effects of such a membrane on cell viability. A magnetic field of 750 G, 400 G, and 900 G was generated on the surface and on the long and wide sides of 3 and 2 cm in contact with the rubber dam. At a distance of 1 mm from the magnetic dam, a magnetic field of 300 G, 150 G, and 400 G was measured on the surface and on the long and wide sides of the rubber dam, respectively. After 72 h, the MG-63 osteoblast-like line showed a slight decrease in cell proliferation (85 +/- 10) compared with the unmodified dam (95 +/- 6) and the cell control population. According to our findings, this magnetic cofferdam is able to generate a static magnetic field and significantly affect cell proliferation in contrast to other nonabsorbable membranes. Further laboratory studies and subsequent clinical trials are needed to evaluate the significant improvements that can be achieved by using this type of magnetic rubber dam in GBR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据