4.6 Article

Syntrophic Butyrate-Oxidizing Consortium Mitigates Acetate Inhibition through a Shift from Acetoclastic to Hydrogenotrophic Methanogenesis and Alleviates VFA Stress in Thermophilic Anaerobic Digestion

期刊

APPLIED SCIENCES-BASEL
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/app13010173

关键词

bioaugmentation; anaerobic digestion; acetoclastic; hydrogenotrophic; syntrophic consortium; syntrophic acetate oxidation; microbial community

向作者/读者索取更多资源

In this study, an enrichment culture of the thermophilic butyrate-oxidizing syntrophic consortium was obtained by gradually increasing the initial butyrate concentration. It was found that even the highest butyrate concentration did not significantly inhibit the methanogenic community, and the limiting factor in the process was acetate degradation. The enrichment culture was effective in mitigating the butyrate-dominated VFA build-up during the anaerobic digestion of readily biodegradable waste, increasing the methane production rate, methane yield, and volatile solids removal.
In anaerobic digestion (AD), butyrate is degraded by syntrophic consortium, but can accumulate in highly loaded AD systems. The effect of butyrate on the AD process attracts much less attention than propionate or acetate. In this work, an enrichment culture of the thermophilic butyrate-oxidizing syntrophic consortium was obtained by gradually increasing the initial butyrate concentration from 20 to 170 mM. Surprisingly, even the highest butyrate concentration did not significantly inhibit the methanogenic community, and the stage of acetate degradation was the limiting overall rate of the process. At 170 mM butyrate, the bacterial community changed towards the dominance of syntrophic acetate-oxidizing (SAO) bacteria related to Syntrophaceticus (42.9%), Syntrophomonas (26.2%) and Firmicutes (26.2%), while the archaeal community experienced a sharp decrease in the abundance of Methanosarcina thermophila (from 86.0 to 25.0%) and increase in Methanothermobacter thermautotrophicus (from 3.2 to 53.1%) and Methanomassiliicoccus (from 3.2 to 21.9%). Thus, the shift from acetoclastic methanogenesis to SAO coupled to hydrogenotrophic methanogenesis occurred as an adaptive strategy to overcome high acetate (similar to 200 mM) build-up. Bioaugmentation with the obtained enrichment culture was effective in mitigating the butyrate-dominated VFA build-up during the AD of readily biodegradable waste, increasing the methane production rate, methane yield and volatile solids removal by more than 3.5, 6.2 and 2.9 times, respectively. Our study revealed that the thermophilic butyrate-oxidizing consortia as bioaugmented culture could be the potential strategy to alleviate the high organic load and VFA stress of AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据