4.6 Article

Comparative Analysis for Slope Stability by Using Machine Learning Methods

期刊

APPLIED SCIENCES-BASEL
卷 13, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/app13031555

关键词

machine learning; slope stability; predictive models; limit equilibrium analysis; factor of safety

向作者/读者索取更多资源

This study conducted a comparative analysis to assess/predict the safety factor (F.S) of earth slopes using MLP, SVM, DT, and RF learning methods. The results showed that MLP provides the most accurate F.S predictions, followed by the SVM algorithm.
Featured Application The presented paper conducted a comparative analysis based on well-known MLP, SVM, DT, and RF learning methods to assess/predict the safety factor (F.S) of earthslopes. Earth slopes' stability analysis is a key task in geotechnical engineering that provides a detailed view of the slope conditions used to implement appropriate stabilizations. In the stability analysis process, calculating the safety factor (F.S) plays an essential part in the stability assessment, which guarantees operations' success. Providing accurate and reliable F.S can be used to improve the stability analysis procedure as well as stabilizations. In this regard, researchers used computational intelligent methodologies to reach highly accurate F.S calculations. The presented study focused on the F.S estimation process and attempted to provide a comparative analysis based on computational intelligence and machine learning methods. In this regard, the well-known multilayer perceptron (MLP), decision tree (DT), support vector machines (SVM), and random forest (RF) learning algorithms were used to predict/calculate F.S for the earth slopes. These machine learning classifiers have a strong capability predict the F.S under certain conditions for slope failures and uncertainties. These models were implemented on a dataset containing 100 earth slopes' stabilities, recorded based on F.S from various locations in the provinces of Fars, Isfahan, and Tehran in Iran, which were randomly divided into the training and testing datasets. These predictive models were validated by Janbu's limit equilibrium analysis method (LEM) and GeoStudio commercial software. Regarding the study's results, MLP (accuracy = 0.901/precision = 0.90) provides more accurate results to predict the F.S than other classifiers, with good agreement with LEM results. The SVM algorithm follows MLP (accuracy = 0.873/precision = 0.85). Regarding the estimated loss function, MLP obtained a 0.29 average loss in the F.S prediction process, which is the lowest rate. The SVM, DT, and RF obtained 0.41, 0.62, and 0.45 losses, respectively. This article tried to fill the gap in traditional analysis procedures based on advanced procedures in slope stability assessments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据