4.7 Article

A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries

期刊

APL MATERIALS
卷 10, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0123562

关键词

-

资金

  1. High Entropy Materials Center under Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by Ministry of Education (MOE)
  2. National Science and Technology Council (NSTC) in Taiwan [MOST 111-2634-F-007-008]
  3. 2030 Cross-Generation Young Scholars Program of NSTC [MOST 111-2628-E-007-018]
  4. SiLiKa Co. LTD.

向作者/读者索取更多资源

Solid-state Li-ion batteries, which can avoid the combustion and explosion of electrolytes and enhance battery performance, are prospective candidates for storage systems. In this study, a novel high-entropy oxide with high conductivity and air stability was successfully synthesized as a solid electrolyte for Li-ion batteries.
Li-ion batteries are considered prospective candidates for storage systems because of their high energy density and long cycling life. However, the use of organic electrolytes increases the risk of explosion and fire. Hence, all-solid-state Li-ion batteries have attracted considerable attention because the use of solid electrolytes avoids the combustion of electrolytes and explosions, and enhances the performance of batteries. Garnet-type oxides are commonly used solid electrolytes. The common Ta-doped Li7La3Zr2O12 can react easily with CO2 and H2O in air, and its ionic conductivity decays after contact with air. In this study, a novel garnet-type, high-entropy oxide, Li6.4La3Zr0.4Ta0.4Nb0.4Y0.6W0.2O12 (LLZTNYWO), is successfully synthesized as a solid electrolyte for Li-ion batteries,using a conventional solid-state method. Ta, Nb, Y, and W are used as substitutes for Zr, which significantly increase conductivity, have high stability in air, and a lower sintering temperature. LLZTNYWO achieves higher Li-ion conductivity at 1.16 x 10(-4) S cm(-1) compared to mono-doped Li6.6La3Zr1.6Ta0.4O12 (6.57 x 10(-5) S cm(-1)), Li6.6La3Zr1.6Nb0.4O12 (2.19 x 10(-5) S cm(-1)), and Li6.2La3Zr1.6W0.4O12 (1.16 x 10(-4) S cm(-1)). Additionally, it exhibits higher ionic conductivity compared to equimolar Li5.8La3Zr0.4Ta0.4Nb0.4Y0.4W0.4O12 (1.95 x 10(-5) S cm(-1)). The Li-ion conductivity of LLZTNYWO remains constant for 30 days in the atmosphere without decay, thereby revealing its excellent air stability. Furthermore, LLZTNYWO exhibits a remarkable electrochemical window of up to 6 V vs Li/Li+ and excellent electrochemical stability against Li metal after cycling at 0.1 mA & BULL;cm(-2) for 2 h, which indicates that it is a promising solid electrolyte for Li-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据