4.8 Article

Topological Surface States in a Gyroid Acoustic Crystal

期刊

ADVANCED SCIENCE
卷 10, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202205723

关键词

gyroid surface; nonsymmorphic symmetry; phononic semimetal state; surface mode

向作者/读者索取更多资源

The acoustic properties of an acoustic crystal consisting of acoustic channels designed according to the gyroid minimal surface embedded in a 3D rigid material are investigated. The resulting gyroid acoustic crystal is characterized by a spin-1 Weyl and a charge-2 Dirac degenerate points that are enforced by its nonsymmorphic symmetry. The non-trivial topology of the acoustic dispersion produces chiral surface states with open arcs, which manifest themselves as waves whose propagation is highly directional and remains confined to the surfaces of a 3D material. Surface arc states have been experimentally validated and negative refraction has been observed. These findings shed light on nontrivial bulk and edge physics in symmetry-based compact continuum materials.
The acoustic properties of an acoustic crystal consisting of acoustic channels designed according to the gyroid minimal surface embedded in a 3D rigid material are investigated. The resulting gyroid acoustic crystal is characterized by a spin-1 Weyl and a charge-2 Dirac degenerate points that are enforced by its nonsymmorphic symmetry. The gyroid geometry and its symmetries produce multi-fold topological degeneracies that occur naturally without the need for ad hoc geometry designs. The non-trivial topology of the acoustic dispersion produces chiral surface states with open arcs, which manifest themselves as waves whose propagation is highly directional and remains confined to the surfaces of a 3D material. Experiments on an additively manufactured sample validate the predictions of surface arc states and produce negative refraction of waves at the interface between adjoining surfaces. The topological surface states in a gyroid acoustic crystal shed light on nontrivial bulk and edge physics in symmetry-based compact continuum materials, whose capabilities augment those observed in ad hoc designs. The continuous shape design of the considered acoustic channels and the ensuing anomalous acoustic performance suggest this class of phononic materials with semimetal-like topology as effective building blocks for acoustic liners and load-carrying structural components with sound proofing functionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据