4.8 Article

Depth-Resolved Localization Microangiography in the NIR-II Window

期刊

ADVANCED SCIENCE
卷 10, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202204782

关键词

fluorescence microscopy; localization imaging; microangiography; second near-infrared spectrum; stereovision

向作者/读者索取更多资源

This study introduces a new method for volumetric deep-tissue microangiography that overcomes the limitations of light diffusion and optical diffraction in wide-field imaging configurations. The proposed method combines stereovision and super-resolution localization imaging to achieve high-resolution 3D imaging and accurate blood flow quantification, enabling detailed visualization and analysis of microvascular networks.
Detailed characterization of microvascular alterations requires high-resolution 3D imaging methods capable of providing both morphological and functional information. Existing optical microscopy tools are routinely used for microangiography, yet offer suboptimal trade-offs between the achievable field of view and spatial resolution with the intense light scattering in biological tissues further limiting the achievable penetration depth. Herein, a new approach for volumetric deep-tissue microangiography based on stereovision combined with super-resolution localization imaging is introduced that overcomes the spatial resolution limits imposed by light diffusion and optical diffraction in wide-field imaging configurations. The method capitalizes on localization and tracking of flowing fluorescent particles in the second near-infrared window (NIR-II, approximate to 1000-1700 nm), with the third (depth) dimension added by triangulation and stereo-matching of images acquired with two short-wave infrared cameras operating in a dual-view mode. The 3D imaging capability enabled with the proposed method facilitates a detailed visualization of microvascular networks and an accurate blood flow quantification. Experiments performed in tissue-mimicking phantoms demonstrate that high resolution is preserved up to a depth of 4 mm in a turbid medium. Transcranial microangiography of the entire murine cortex and penetrating vessels is further demonstrated at capillary level resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据