4.6 Article

High-Performance Cadmium-Free Blue Quantum Dot Light-Emitting Devices with Stepwise Double Hole-Transport Layers

期刊

ADVANCED ELECTRONIC MATERIALS
卷 9, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.202200970

关键词

C8-BTBT; quantum dot light-emitting diodes (QLEDs); quantum dots; stepwise co-HTLs

向作者/读者索取更多资源

High-performance cadmium-free ZnSe/ZnS quantum dot light-emitting diodes (QLEDs) are achieved by constructing a double organic hole-transport layer, leading to improved carrier balance and higher external quantum efficiency.
ZnSe/ZnS core/shell quantum dots (QDs) are environmental-friendly blue light-emitting material, which can easily achieve deep blue emission upon external excitation. However, its deep valence band (VB) and numerous defect states remain handicap to realize sufficient performance of quantum dot light-emitting diodes (QLEDs). In this work, high-performance cadmium-free ZnSe/ZnS QLEDs by constructing a double organic hole-transport layer (HTL) to obtain carrier balance are presented. The double HTLs, which consist of poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), can suppress the accumulation of electrons between the HTL and the emissive layer (EML), leading to more hole and electron recombination luminescence in QD layer. In addition, the C8-BTBT layer is conducive to improve the uniformity of QDs film. Thus, the resulting device achieves an external quantum efficiency of 7.23% with TFB/C8-BTBT double HTLs, which is almost 150% higher than that of traditional devices based on a single hole-transport layer (4.84%). The authors anticipate that these results can provide a guidance for the optimization of cadmium-free blue QLEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据