4.5 Article

Designing Filter Functions of Frequency-Modulated Pulses for High-Fidelity Two-Qubit Gates in Ion Chains

期刊

PHYSICAL REVIEW APPLIED
卷 19, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.19.014014

关键词

-

向作者/读者索取更多资源

This study develops filter functions for Molmer-Sorensen gates in trapped-ion quantum computers, accurately predicting the change in gate error due to small parameter fluctuations at any frequency. Experimental results show that using these filter functions can significantly improve gate fidelity in a five-ion chain.
High-fidelity two-qubit gates in quantum computers are often hampered by fluctuating experimental parameters. The effects of time-varying parameter fluctuations lead to coherent noise on the qubits, which can be suppressed by designing control signals with appropriate filter functions. Here, we develop filter functions for Molmer-Sorensen gates of trapped-ion quantum computers that accurately predict the change in gate error due to small parameter fluctuations at any frequency. We then design the filter functions of frequency-modulated laser pulses, and compare this method with pulses that are robust to static offsets of the motional-mode frequencies. Experimentally, we measure the noise spectrum of the motional modes and use it for designing the filter functions, which improves the gate fidelity from 99.23(7)% to 99.55(7)% in a five-ion chain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据