4.6 Article

Transcriptome and metabolome response of eggplant against Ralstonia solanacearum infection

期刊

PEERJ
卷 11, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.14658

关键词

Bacterial wilt; Eggplant; JA signaling pathway; Metabolomes; Transcriptomes

向作者/读者索取更多资源

The response of eggplant to bacterial wilt was studied by analyzing the whole-root transcriptomes and metabolomes. A total of 2,896 differentially expressed genes and 63 differences in metabolites were identified after inoculation with Ralstonia solanacearum. The results showed that phytohormones played a key role in eggplant response to bacterial wilt.
Bacterial wilt is a soil-borne disease that represents ubiquitous threat to Solanaceae crops. The whole-root transcriptomes and metabolomes of bacterial wilt-resistant eggplant were studied to understand the response of eggplant to bacterial wilt. A total of 2,896 differentially expressed genes and 63 differences in metabolites were identified after inoculation with Ralstonia solanacearum. Further analysis showed that the biosynthesis pathways for phytohormones, phenylpropanoids, and flavonoids were altered in eggplant after inoculation with R. solanacearum. The results of metabolomes also showed that phytohormones played a key role in eggplant response to bacterial wilt. Integrated analyses of the transcriptomic and metabolic datasets indicated that jasmonic acid (JA) content and gene involved in the JA signaling pathway increased in response to bacterial wilt. These findings remarkably improve our understanding of the mechanisms of induced defense response in eggplant and will provide insights intothe development of disease-resistant varieties of eggplant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据