4.8 Article

Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures

期刊

JOURNAL OF POWER SOURCES
卷 331, 期 -, 页码 332-339

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.09.064

关键词

Carbon tubular nanostructures; Hierarchical structure; Flexible energy storage technologies; Supercapacitors; Capacitive performance

资金

  1. National Natural Science Foundation of China [51602265]
  2. scientific and technological projects for distinguished young scholars of Sichuan Province [2015JQ0013]
  3. China Postdoctoral Science Foundation [2016M592692]
  4. Fundamental Research Funds for the Central Universities of China [A0920502051619-72]

向作者/读者索取更多资源

Hierarchical structure design can greatly enhance the unique properties of primary material(s) but suffers from complicated preparation process and difficult self-assembly of materials with different dimensionalities. Here we report on the growth of single carbon tubular nanostructures with hierarchical structure (hCTNs) through a simple method based on direct conversion of carbon dioxide. Resorting to in-situ transformation and self-assembly of carbon micro/nano-structures, the obtained hCTNs are blood-like multichannel hierarchy composed of one large channel across the hCTNs and plenty of small branches connected to each other. Due to the unique pore structure and high surface area, these hCTN-based flexible supercapacitors possess the highest areal capacitance of similar to 320 mF cm(-2), as well as good rate-capability and excellent cycling stability (95% retention after 2500 cycles). It was established that this method can control the morphology, size, and density of hCTNs and effectively construct hCTNs well anchored to the various substrates. Our work unambiguously demonstrated the potential of hCTNs for large flexible supercapacitors and integrated energy management electronics. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据