4.8 Article

Oxygen substitution effects in Li10GeP2S12 solid electrolyte

期刊

JOURNAL OF POWER SOURCES
卷 324, 期 -, 页码 798-803

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.05.100

关键词

Lithium ion conductor; All-solid-state battery; Oxysulfide; Li10GeP2S12

资金

  1. Advanced Low Carbon Technology Research and Development Program, Specially Promoted Research for Innovative Next Generation Batteries (ALCA-SPRING) of the Japan Science and Technology Agency (JST)
  2. Japan Synchrotron Radiation Institute (JASRI) [2013B1807]
  3. Grants-in-Aid for Scientific Research [16J01204] Funding Source: KAKEN

向作者/读者索取更多资源

For the lithium super-ionic conductor Li10GeP2S12, the partial substitution of sulfur by oxygen is achieved via a solid-state reaction. The solid-solution range of oxygen is found to be 0 <= x < 0.9 in Li10GeP2S12-xOx. Structure refinements using synchrotron X-ray diffraction data confirm the preference for oxygen substitution in the PS4 tetrahedra. The local structural change in the P(S/O)(4) tetrahedra upon substitution is also indicated by Raman spectroscopy. Ionic conduction properties are maintained even after the oxygen substitution in Li10GeP2S12; the ionic conductivity of Li10GeP2S12-xOx (0.3 <= x <= 0.6) ranges from 1.03 x 10(-2) to 8.43 x 10(-3) S cm(-1) at 298 K. No redox current is observed by cyclic voltammetry from nearly 0 to 10 V versus Li/Li+ except for that due to the lithium deposition/dissolution reactions. All solid-state batteries using Li10GeP2S12-xOx (x = 0.3 and 0.6) as solid electrolytes with Li metal anodes show discharge capacities exceeding 100 mAh g(-1) and better cycling performance compared to batteries using the original Li10GeP2S12. The partial substitution of oxygen for sulfur in Li10GeP2S12 affords a novel solid electrolyte, Li10GeP2S12-xOx, with high conductive properties and electrochemical stability. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据