4.8 Article

Lithium battery aging model based on Dakin's degradation approach

期刊

JOURNAL OF POWER SOURCES
卷 325, 期 -, 页码 273-285

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.06.036

关键词

Lithium battery; Calendar aging; Power cycling; Ageing model; Eyring's law; Dakin's law

资金

  1. French ADEME
  2. National Research Agency (ANR)
  3. French FUI (United Interministerial Fund) under the MOBICUS3 industrial research program

向作者/读者索取更多资源

This paper proposes and validates a calendar and power cycling aging model for two different lithium battery technologies. The model development is based on previous SIMCAL and SIMSTOCK project data. In these previous projects, the effect of the battery state of charge, temperature and current magnitude on aging was studied on a large panel of different battery chemistries. In this work, data are analyzed using Dakin's degradation approach. In fact, the logarithms of battery capacity fade and the increase in resistance evolves linearly over aging. The slopes identified from straight lines correspond to battery aging rates. Thus, a battery aging rate expression function of aging factors was deduced and found to be governed by Eyring's law. The proposed model simulates the capacity fade and resistance increase as functions of the influencing aging factors. Its expansion using Taylor series was consistent with semi empirical models based on the square root of time, which are widely studied in the literature. Finally, the influence of the current magnitude and temperature on aging was simulated. Interestingly, the aging rate highly increases with decreasing and increasing temperature for the ranges of 5 degrees C-25 degrees C and 25 degrees C-60 degrees C, respectively. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据