4.6 Review

Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives

期刊

MATERIALS HORIZONS
卷 10, 期 3, 页码 745-787

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2mh01067d

关键词

-

向作者/读者索取更多资源

Electrochemical energy storage devices with stable performance and high power output, such as Zn-air batteries, are in high demand for global energy requirements. Noble metal-based electrocatalysts have limitations in rechargeable Zn-air batteries, leading to the exploration of transition-metal-based materials and heteroatom-doped metal-free carbon materials as alternatives. Metal-organic frameworks (MOFs) have gained attention as precursors for the synthesis of advanced functional materials due to their unique structural flexibility and uniformly dispersed active sites.
Electrochemical energy storage devices with stable performance, high power output, and energy density are urgently needed to meet the global energy demand. Among the different electrochemical energy storage devices, batteries have become the most promising energy technologies and ranked as a highly investigated research subject. Recently, metal-air batteries especially Zn-air batteries (ZABs) have attracted enormous scientific interest in the electrochemical community due to their ease of operation, sustainability, environmental friendliness, and high efficiency. The oxygen electrocatalytic reactions [oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)] are the two fundamental reactions for the development of ZABs. Noble metal-based electrocatalysts are widely considered as the benchmark for oxygen electrocatalysis, but their practical application in rechargeable ZAB is hindered due to several shortcomings. Thus, to replace noble metal-based catalysts, a wide range of transition-metal-based materials and heteroatom-doped metal-free carbon materials has been extensively investigated as oxygen electrocatalysts for ZABs. Recently, metal-organic frameworks (MOFs) with unique structural flexibility and uniformly dispersed active sites have become attractive precursors for the synthesis of a large variety of advanced functional materials. Herein, we summarize the recent progress of MOF-derived oxygen electrocatalysts (MOF-derived carbon nanomaterials, MOF-derived alloys/nanoparticles, and MOF-derived single-atom electrocatalysts) for ZABs. Specifically, we highlight MOF-derived single-atom electrocatalysts owing to the wide exploration of these emerging materials in electrocatalysis. The influence of the active sites, structural/compositional design, and porosity of MOF-derived advanced materials on the oxygen electrocatalytic performances is also discussed. Finally, the existing challenges and prospects of MOF-derived electrocatalysts in ZABs are briefly highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据