4.6 Article

Ethanolic Extracts of Datura innoxia Have Promising Acaricidal Activity against Rhipicephalus microplus as It Blocks the Glutathione S-Transferase Activity of the Target Tick

期刊

GENES
卷 14, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/genes14010118

关键词

Datura innoxia; acaricide; glutathione S-transferases; phytochemicals; docking studies; tick-borne disease

向作者/读者索取更多资源

The acaricidal activity of Datura innoxia ethanolic plant extract against Rhipicephalus microplus was studied using the adult immersion test and larval packet test. In vitro experiments and molecular docking simulations showed that the plant extract had consistent acaricidal activity and strong interactions with the target protein. This study also established the inhibitory effect of the extract on oviposition and larval mortality, indicating its potential use in tick management.
Rhipicephalus microplus is a major bovine ectoparasite that negatively impacts the cattle industry. The acaricidal activity of Datura innoxia ethanolic plant extract against R. microplus, compared with trichlorfon, was examined using the adult immersion test (AIT), and larval packet test (LPT). In vitro acaricidal activity of the selected plant extract against R. microplus engorged females was evaluated at different concentrations (2.5, 5, 10, 20, and 40 mg/mL), and was the same for AIT and LPT. It was further supported by in silico molecular docking of D. innoxia's 21 phytochemicals against the R. microplus Glutathione S-transferases (RmGST) protein's three-dimensional (3D) structure predicted by the trRosetta server. The modeled 3D structure was then evaluated and confirmed with PROCHECK, ERRAT, and Verify3D online servers. To predict the binding mechanisms of these compounds, molecular docking was performed using Auto dock Vina software, and molecular dynamic (MD) simulations were used to investigate the protein atom's dynamic motion. D. innoxia has a relatively higher inhibitory effect on oviposition (from 9.81% to 45.37%) and total larval mortality (42.33% at 24 h and 93.67% at 48 h) at 40 mg/mL. Moreover, the docking results showed that the chemicals norapoatropine and 7-Hydroxyhyoscyamine have strong interactions with active site residues of the target protein, with a docking score of -7.3 and -7.0 Kcal/mol, respectively. The current work also provided a computational basis for the inhibitors of Glutathione S-transferases that were studied in this research work, and this new knowledge should aid in creating new and effective acaricidal chemicals. Furthermore, this plant extract's acaricide activity and its effect on oviposition and larval mortality were established in this work for the first time, indicating the possible use of this extract in the management of ticks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据