4.6 Article

Identification and Functional Analysis of CAD Gene Family in Pomegranate (Punica granatum)

期刊

GENES
卷 14, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/genes14010026

关键词

pomegranate; cinnamyl alcohol dehydrogenase; lignin; bioinformatics analysis; gene expression

向作者/读者索取更多资源

This study identified and studied the expression correlation of the pomegranate CAD gene family. The family has 25 members distributed on seven chromosomes. The family was divided into four groups, with one involved in lignin synthesis and another in stress resistance. Gene expression analysis revealed multiple functions of the PgCAD gene family.
[Objective] Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. The aim of this study was to identify CAD gene family members in pomegranate and its expression correlation with seed hardness. [Methods] Based on the reported CAD sequence of Arabidopsis, the CAD gene family of pomegranate was identified by homologous comparison, and then phylogenetic, molecular characterization, and expression profile analysis were performed. [Results] Pomegranate CAD gene family has 25 members, distributed on seven chromosomes of pomegranate. All pomegranate CAD proteins have similar physical and chemical properties. We divide the family into four groups based on evolutionary relationships. The member of group I, called bona fide CAD, was involved in lignin synthesis. Most of the members of group II were involved in stress resistance. The functions of groups III and IV need to be explored. We found four duplicated modes (whole genome duplication or segmental (WGD), tandem duplication (TD), dispersed duplication (DSD), proximal duplication (PD) in this family; TD (36%) had the largest number of them. We predicted that 20 cis-acting elements were involved in lignin synthesis, stress resistance, and response to various hormones. Gene expression profiles further demonstrated that the PgCAD gene family had multiple functions. [Conclusions] Pomegranate CAD gene family is involved in lignin synthesis of hard-seeded cultivar Hongyushizi and Baiyushizi, but its role in seed hardness of soft-seeded cultivar Tunisia needs to be further studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据