4.7 Article

Generation of self-replicating airway organoids from the cave nectar bat Eonycteris spelaea as a model system for studying host-pathogen interactions in the bat airway epithelium

期刊

EMERGING MICROBES & INFECTIONS
卷 12, 期 1, 页码 -

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/22221751.2022.2148561

关键词

Bat; Chiroptera; Eonycteris spelaea; airway organoids; airway epithelial cells

向作者/读者索取更多资源

In this study, researchers successfully established in vitro culture systems for bat airway organoids and airway epithelial cells, which are valuable for studying the interactions between bats and pathogens. These model systems are critical for assessing the susceptibility of different bat species to viruses and the potential of bats as reservoirs for emerging infectious agents.
Bats are reservoir hosts for various zoonotic viruses with pandemdic potential in humans and livestock. In vitro systems for studying bat host-pathogen interactions are of significant interest. Here, we establish protocols to generate bat airway organoids (AOs) and airway epithelial cells differentiated at the air-liquid interface (ALI-AECs) from tracheal tissues of the cave-nectar bat Eonycteris spelaea. In particular, we describe steps which enable laboratories that do not have access to live bats to perform extended experimental work upon procuring an initial batch of bat primary airway tissue. Complete mucociliary differentiation required treatment with IL-13. E. spelaea ALI-AECs supported productive infection with PRV3M, an orthoreovirus for which Pteropodid bats are considered the reservoir species. However, these ALI-AECs did not support SARS-CoV-2 infection, despite E. spelaea ACE2 receptor being capable of mediating SARS-CoV-2 spike pseudovirus entry. This work provides critical model systems for assessing bat species-specific virus susceptibility and the reservoir likelihood for emerging infectious agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据