4.8 Article

Calculation of the state of safety (SOS) for lithium ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 324, 期 -, 页码 509-520

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.05.068

关键词

Li-ion battery; State of safety; Bell curve; Abuse testing; Thermal runaway; Hazard levels

资金

  1. Singapore National Research Foundation (NRF)

向作者/读者索取更多资源

As lithium ion batteries are adopted in electric vehicles and stationary storage applications, the higher number of cells and greater energy densities increases the risks of possible catastrophic events. This paper shows a definition and method to calculate the state of safety of an energy storage system based on the concept that safety is inversely proportional to the concept of abuse. As the latter increases, the former decreases to zero. Previous descriptions in the literature are qualitative in nature but don't provide a numerical quantification of the safety of a storage system. In the case of battery testing standards, they only define pass or fail criteria. The proposed state uses the same range as other commonly used state quantities like the SOC, SOH, and SOF, taking values between 0, completely unsafe, and 1, completely safe. The developed function combines the effects of an arbitrary number of subfunctions, each of which describes a particular case of abuse, in one or more variables such as voltage, temperature, or mechanical deformation, which can be detected by sensors or estimated by other techniques. The state of safety definition can be made more general by adding new subfunctions, or by refining the existing ones. (C) 2016 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据