4.6 Article

SWCNTs/PEDOT: PSS Coated Cotton for Wearable Clothes and Supercapacitor Applications

期刊

SUSTAINABILITY
卷 15, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/su15010889

关键词

SWCNTs; PEDOT; PSS; resistance; conductive cotton; cotton fabric; smart wearable textile

向作者/读者索取更多资源

In this study, the effects of single-wall carbon nanotubes (SWCNT)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) loading on the transparency and conductivity of pure cotton were investigated. The cotton fabric exhibited a low surface resistance and retained its maximum resistance even after three months. The results from various characterization techniques confirmed the good dispersion of SWCNTs/PEDOT: PSS in the cotton sample. Furthermore, the composite cotton/hydrogel polymer/composite cotton showed high specific capacitance and thermal stability.
Herein, we report single-wall carbon nanotubes (SWCNT)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) loading on the transparency and conductivity of pure cotton and systematically studied using a four-probe stack made of copper (Cu) which showed a surface resistance of 0.08 omega/cm. Moreover, the treated cotton cloth retained its maximum resistance even after three months. Surface morphology was investigated by scanning electron microscopy (SEM) and elemental structure analysis was performed by energy-dispersive X-ray (EDX), while the structural analysis was performed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques, confirming that there is a good dispersion of SWCNTs/PEDOT: PSS in the cotton sample. The composite cotton/hydrogel polymer/composite cotton achieved a specific capacitance of 212.16 F/g at 50 mV/s. Thermal properties were also investigated using thermogravimetric analysis (TGA) and differential scale calorimetry (DSC). The low surface resistance and thermal stability show that cotton fabric can be a promising candidate for smart wearable textiles and modern circuitry applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据