4.6 Article

A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices

期刊

MICROMACHINES
卷 14, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/mi14010016

关键词

3D printing; additive manufacturing; microfluidic; embedded; microchannel; sacrificial material; clearance

向作者/读者索取更多资源

3D printing is expected to make significant advances in fields such as artificial muscles, prosthetics, biomedical diagnostics, biofuel cells, flexible electronics, and military logistics. However, before this can happen, the basic problem of removing sacrificial material from embedded microchannels needs to be solved. The presented technique demonstrates consistent performance in clearing sacrificial material from 3D-printed microfluidics, making it an important tool in realizing the potential of 3D printing in microfluidics and its wide range of applications.
3D-printing is poised to enable remarkable advances in a variety of fields, such as artificial muscles, prosthetics, biomedical diagnostics, biofuel cells, flexible electronics, and military logistics. The advantages of automated monolithic fabrication are particularly attractive for complex embedded microfluidics in a wide range of applications. However, before this promise can be fulfilled, the basic problem of removal of sacrificial material from embedded microchannels must be solved. The presented work is an experimental proof of principle of a novel technique for clearance of sacrificial material from embedded microchannels in 3D-printed microfluidics. The technique demonstrates consistent performance (similar to 40-75% clearance) in microchannels with printed width of similar to 200 mu m and above. The presented technique is thus an important enabling tool in achieving the promise of 3D printing in microfluidics and its wide range of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据