4.6 Review

Crystal structures in state-of-the-art non-fullerene electron acceptors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 11, 期 2, 页码 481-494

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ta08367a

关键词

-

向作者/读者索取更多资源

Great progress has been made in the power conversion efficiencies (PCEs) of organic photovoltaics (OPVs) by using non-fullerene acceptors (NFAs). In order to further improve device performance, it is important to understand the design strategies, packing information, and intermolecular interactions of NFAs at the atomic level. This review highlights recent advances in the study of single crystal structures of NFAs in OPVs, as well as the relationship between molecular design strategies, packing arrangement, and their corresponding properties. The challenges and future development of new electron acceptors with ideal single crystal structures and packing modes for next-generation organic photovoltaics are also discussed.
Great progress in the power conversion efficiencies (PCEs) of organic photovoltaics (OPVs) has been made by employing non-fullerene acceptors (NFAs). In order to further promote the device performance, it is necessary to systematically understand the design strategies, packing information and intermolecular interactions at the atomic level of NFAs. In this review, we highlight the recent advances in the study of single crystal structures of NFAs in OPVs, as well as the relationship between molecular design strategies, packing arrangement, and their corresponding properties. Finally, the challenges and future development of new electron acceptors with ideal single crystal structures and packing modes for next-generation organic photovoltaics are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据