4.4 Article

One-loop matching of scotogenic model onto standard model effective field theory up to dimension 7

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2022)053

关键词

Other Weak Scale BSM Models; SMEFT; Specific BSM Phenomenology

资金

  1. Chung-Yao Chao Fellowship at Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP) [NSFC-12035008, NSFC-11975130, NSFC-12090064]
  2. National Key Research and Development Program of China
  3. Guangdong Major Project of Basic and Applied Basic Research [2017YFA0402200]
  4. Science and Technology Program of Guangzhou [2020B0301030008]
  5. Shanghai Pujiang Program [2019050001]
  6. [20PJ1407800]

向作者/读者索取更多资源

The scotogenic neutrino seesaw model is a minimal extension of the standard model that can explain the tiny neutrino mass and provide a dark matter candidate. The new particles N and eta in the model are assumed to be well above the electroweak scale, and their effects on low energy observables are studied using effective field theory approach.
The scotogenic neutrino seesaw model is a minimal extension of the standard model with three Z(2)-odd right-handed singlet fermions N and one Z(2)-odd Higgs doublet eta that can accommodate the tiny neutrino mass and provide a dark matter candidate in a unified picture. Due to lack of experimental signatures for electroweak scale new physics, it is appealing to assume these new particles are well above the electroweak scale and take the effective field theory approach to study their effects on low energy observables. In this work we apply the recently developed functional matching formalism to the one-loop matching of the model onto the standard model effective field theory up to dimension seven for the case when all new states N and eta are heavy to be integrated out. This is a realistic example which has no tree-level matching due to the Z(2) symmetry. Using the matching results, we analyze their phenomenological implications for several physical processes, including the lepton number violating effect, the CDF W mass excess, and the lepton flavor violating decays like mu & RARR; e gamma and mu & RARR; 3e.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据