4.6 Review

Recent advances in regulating the performance of acid oxygen reduction reaction on carbon-supported non-precious metal single atom catalysts

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 76, 期 -, 页码 601-616

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2022.09.047

关键词

Oxygen reduction reaction; Single atom catalysts; Microenvironment of center metal; Regulation of center metal atoms; Electron structure; Proton-exchange-membrane fuel cells

向作者/读者索取更多资源

Developing high performance and low-cost catalysts for oxygen reduction reaction (ORR) in challenging acid condition is vital for proton-exchange-membrane fuel cells (PEMFCs). Carbon-supported non-precious metal single atom catalysts (SACs) have been identified as potential catalysts in the field. However, the ORR performance of SACs is still unsatisfactory. Importantly, microenvironment adjustment of SACs offers the chance to promote the performance of acid ORR.
Developing high performance and low-cost catalysts for oxygen reduction reaction (ORR) in challenging acid condition is vital for proton-exchange-membrane fuel cells (PEMFCs). Carbon-supported non -precious metal single atom catalysts (SACs) have been identified as potential catalysts in the field. Great advance has been obtained in constructing diverse active sites of SACs for improving the perfor-mance and understanding the fundamental principles of regulating acid ORR performance. However, the ORR performance of SACs is still unsatisfactory. Importantly, microenvironment adjustment of SACs offers chance to promote the performance of acid ORR. In this review, acid ORR mechanism, atten-uation mechanism and performance improvement strategies of SACs are presented. The strategies for promoting ORR activity of SACs include the adjustment of center metal and its microenvironment. The relationship of ORR performance and structure is discussed with the help of advanced experimental investigations and theoretical calculations, which will offer helpful direction for designing advanced SACs for ORR.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据