4.6 Review

Interfacial design of silicon/carbon anodes for rechargeable batteries: A review

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 76, 期 -, 页码 576-600

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2022.09.020

关键词

Silicon; carbon anodes; Lithium-ion batteries; Interfacial reaction; Carbon sources; Interface bonding

向作者/读者索取更多资源

This review provides an overview of the research progress on Si/C anodes in lithium-ion batteries. It highlights the lithiation mechanism, solid electrolyte interface formation, and various carbon sources used in Si/C anodes. The review also summarizes and prospects the selection of carbonaceous materials, structural design, and interface control of Si/C anodes, as well as their application in all-solid-state lithium-ion batteries and sodium-ion batteries.
Silicon (Si) has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity, low operating potential and abundant resources. Nevertheless, huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electro-chemical performance. Thus, carbon (C) materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems. This review focuses on current status in the exploration of Si/C anodes, including the lithiation mechanism and solid electrolyte interface formation, various carbon sources in Si/C anodes, such as traditional carbon sources (graphite, pitch, biomass), and novel carbon sources (MXene, graphene, MOFs-derived carbon, graphdiyne, etc.), as well as interfacial bonding modes of Si and C in the Si/C anodes. Finally, we summarize and prospect the selection of car-bonaceous materials, structural design and interface control of Si/C anodes, and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al. This review will help researchers in the design of novel Si/C anodes for rechargeable batteries. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据